Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.253
Filtrar
1.
BMC Cancer ; 24(1): 399, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561690

RESUMO

BACKGROUND: Podoplanin (PDPN) expressed on tumour cells interacts with platelet C-type lectin-like receptor 2 (CLEC-2). This study aimed to investigate the role of the PDPN-platelet CLEC-2 interaction in melanoma pulmonary metastasis. METHODS: Murine melanoma B16-F0 cells, which have two populations that express podoplanin, were sorted by FACS with anti-podoplanin staining to obtain purified PDPN + and PDPN- B16-F0 cells. C57BL/6J mice transplanted with CLEC-2-deficient bone marrow cells were used for in vivo experiments. RESULTS: The in vivo data showed that the number of metastatic lung nodules in WT mice injected with PDPN + cells was significantly higher than that in WT mice injected with PDPN- cells and in WT or CLEC-2 KO mice injected with PDPN- cells. In addition, our results revealed that the platelet Syk-dependent signalling pathway contributed to platelet aggregation and melanoma metastasis. CONCLUSIONS: Our study indicates that the PDPN-CLEC-2 interaction promotes experimental pulmonary metastasis in a mouse melanoma model. Tumour cell-induced platelet aggregation mediated by the interaction between PDPN and CLEC-2 is a key factor in melanoma pulmonary metastasis.


Assuntos
Neoplasias Pulmonares , Melanoma , Animais , Camundongos , Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Agregação Plaquetária
2.
Proc Natl Acad Sci U S A ; 121(18): e2317760121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652741

RESUMO

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.


Assuntos
Decorina , Linfangiogênese , Decorina/metabolismo , Decorina/genética , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Linhagem Celular Tumoral , Progressão da Doença , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Regulação Neoplásica da Expressão Gênica
3.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592583

RESUMO

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neoplasias Pulmonares , Camundongos Knockout , Receptor trkB , Receptores Tipo II do Fator de Necrose Tumoral , Esquizofrenia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Camundongos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/deficiência , Receptor trkB/metabolismo , Receptor trkB/genética , Células A549 , Masculino , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
4.
FASEB J ; 38(8): e23590, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38656553

RESUMO

Studies have suggested that microglial IL-6 modulates inflammatory pain; however, the exact mechanism of action remains unclear. We therefore hypothesized that PKCε and MEG2 competitively bind to STAT3 and contribute to IL-6-mediated microglial hyperalgesia during inflammatory pain. Freund's complete adjuvant (FCA) and lipopolysaccharide (LPS) were used to induce hyperalgesia model mice and microglial inflammation. Mechanical allodynia was evaluated using von Frey tests in vivo. The interaction among PKCε, MEG2, and STAT3 was determined using ELISA and immunoprecipitation assay in vitro. The PKCε, MEG2, t-STAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, GLUT3, and TREM2 were assessed by Western blot. IL-6 promoter activity and IL-6 concentration were examined using dual luciferase assays and ELISA. Overexpression of PKCε and MEG2 promoted and attenuated inflammatory pain, accompanied by an increase and decrease in IL-6 expression, respectively. PKCε displayed a stronger binding ability to STAT3 when competing with MEG2. STAT3Ser727 phosphorylation increased STAT3 interaction with both PKCε and MEG2. Moreover, LPS increased PKCε, MEG2, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and GLUT3 levels and decreased TREM2 during microglia inflammation. IL-6 promoter activity was enhanced or inhibited by PKCε or MEG2 in the presence of STAT3 and LPS stimulation, respectively. In microglia, overexpression of PKCε and/or MEG2 resulted in the elevation of tSTAT3, pSTAT3Tyr705, pSTAT3Ser727, IL-6, and TREM2, and the reduction of GLUT3. PKCε is more potent than MEG2 when competitively binding to STAT3, displaying dual modulatory effects of IL-6 production, thus regulating the GLUT3 and TREM2 in microglia during inflammatory pain sensation.


Assuntos
Hiperalgesia , Inflamação , Interleucina-6 , Microglia , Proteína Quinase C-épsilon , Fator de Transcrição STAT3 , Animais , Fator de Transcrição STAT3/metabolismo , Microglia/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteína Quinase C-épsilon/genética , Camundongos , Interleucina-6/metabolismo , Interleucina-6/genética , Inflamação/metabolismo , Hiperalgesia/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Ligação Proteica , Fosforilação , Dor/metabolismo , Adjuvante de Freund
5.
Int J Biol Sci ; 20(6): 1992-2007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617547

RESUMO

Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.


Assuntos
NF-kappa B , Osteoartrite , Animais , Camundongos , Quimiocinas CXC , Inflamação , Glicoproteínas de Membrana/genética , Osteoartrite/genética , Fosfatidilinositol 3-Quinases , Receptores Imunológicos/genética , Transdução de Sinais/genética
6.
Clin Transl Med ; 14(4): e1665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649789

RESUMO

BACKGROUND: White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS: Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS: TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS: We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.


Assuntos
Lesões Encefálicas Traumáticas , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Substância Branca , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Microglia/metabolismo , Camundongos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Substância Branca/metabolismo , Substância Branca/patologia , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Modelos Animais de Doenças , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL
7.
Mol Neurodegener ; 19(1): 37, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654375

RESUMO

BACKGROUND: Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS: In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS: We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-ß plaques in vivo in a model of AD. CONCLUSIONS: This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.


Assuntos
Doença de Alzheimer , Microglia , Oligonucleotídeos Antissenso , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Oligonucleotídeos Antissenso/farmacologia , Animais , Camundongos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Animais de Doenças
8.
Theranostics ; 14(5): 2232-2245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505612

RESUMO

Rationale: Systemic sclerosis (SSc) is a chronic and incurable autoimmune disease with high mortality rates, and skin fibrosis is one of distinguishing hallmarks in the pathogenesis. However, macrophage heterogeneity regulating skin fibrosis remain largely unknown. Methods: We established mouse disease model and performed single-cell RNA-sequencing (scRNA-seq) to resolve the dynamic and heterogenous characteristics of macrophages in skin fibrosis, and the role of TREM2-dependent macrophages in the pathological process was investigated using knockout mice and intraperitoneal transferring TREM2+ macrophages combining with functional assays. Results: We show that TREM2-expressing macrophages (TREM2+ MФs) accumulate in injured skin of mice treated by bleomycin (BLM) and human SSc, and their gene signatures and functional pathways are identified in the course of disease. Genetic ablation of Trem2 in mice globally accelerates and aggravates skin fibrosis, whereas transferring TREM2hi macrophages improves and alleviates skin fibrosis. Amazingly, we found that disease-associated TREM2+ MФs in skin fibrosis exhibit overlapping signatures with fetal skin counterparts in mice and human to maintain skin homeostasis, but each has merits in skin remodeling and development respectively. Conclusion: This study identifies that TREM2 acts as a functional molecule and a major signaling by which macrophage subpopulations play a protective role against fibrosis, and disease-associated TREM2+ MФs in skin fibrosis might undergo a fetal-like reprogramming similar to fetal skin counterparts.


Assuntos
Macrófagos , Pele , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Fibrose , Pele/patologia , Bleomicina , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
9.
Crit Rev Immunol ; 44(4): 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505917

RESUMO

Stroke remained the leading cause of disability in the world, and the most important non-modifiable risk factor was age. The treatment of stroke for elder patients faced multiple difficulties due to its complicated pathogenesis and mechanism. Therefore, we aimed to identify the potential differentially expressed genes (DEGs) and singnalling pathways for aged people of stroke. To compare the DEGs in the aged rats with or without middle cerebral artery occlusion (MCAO) and to analyse the important genes and the key signaling pathways involved in the development of cerebral ischaemia in aged rats. The Gene Expression Omnibus (GEO) analysis tool was used to analyse the DEGs in the GSE166162 dataset of aged MCAO rats compared with aged sham rats. Differential expression analysis was performed in aged MCAO rats and sham rats using limma. In addition, the 74 DEGs (such as Fam111a, Lcn2, Spp1, Lgals3 and Gpnmb were up-regulated; Egr2, Nr4a3, Arc, Klf4 and Nr4a1 were down-regulated) and potential compounds corresponding to the top 20 core genes in the Protein-Protein Interaction (PPI) network was constructed using the STRING database (version 12.0). Among these 30 compounds, resveratrol, cannabidiol, honokiol, fucoxanthin, oleandrin and tyrosol were significantly enriched. These DEGs were subjected to Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to determine the most significantly enriched pathway in aged MCAO rats. Moreover, innate immune response, the complement and coagulation cascades signaling pathway, the IL-17 and other signaling pathways were significantly correlated with the aged MCAO rats. Our study indicates that multiple genes and pathological processes involved in the aged people of stroke. The immune response might be the key pathway in the intervention of cerebral infarction in aged people.


Assuntos
Infarto da Artéria Cerebral Média , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Idoso , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Perfilação da Expressão Gênica , Resveratrol , Expressão Gênica , Glicoproteínas de Membrana/genética
10.
Biochem Biophys Res Commun ; 708: 149819, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531221

RESUMO

Metastasis, which is the spread of cancer cells into distant organs, is a critical determinant of prognosis in patients with cancer, and blood vessels are the major route for cancer cells to spread systemically. Extravasation is a critical process for the hematogenous metastasis; however, its underlying molecular mechanisms remain poorly understood. Here, we identified that senescent ECs highly express C-type lectin domain family 1 member B (CLEC-1b), and that endothelial CLEC-1b inhibits the hematogenous metastasis of a certain type of cancer. CLEC-1b expression was enhanced in ECs isolated from aged mice, senescent cultured human ECs, and ECs of aged human. CLEC-1b overexpression in ECs prevented the disruption of endothelial integrity, and inhibited the transendothelial migration of cancer cells expressing podoplanin (PDPN), a ligand for CLEC-1b. Notably, target activation of CLEC-1b in ECs decreased the hematogenous metastasis in the lungs by cancer cells expressing PDPN in mice. Our data reveal the protective role of endothelial CLEC-1b against cancer hematogenous metastasis. Considering the high CLEC-1b expression in senescent ECs, EC senescence may play a beneficial role with respect to the cancer hematogenous metastasis.


Assuntos
Lectinas Tipo C , Neoplasias , Idoso , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Migração Transendotelial e Transepitelial
11.
Orphanet J Rare Dis ; 19(1): 125, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500130

RESUMO

BACKGROUND: CLN3 disease (also known as CLN3 Batten disease or Juvenile Neuronal Ceroid Lipofuscinosis) is a rare pediatric neurodegenerative disorder caused by biallelic mutations in CLN3. While extensive efforts have been undertaken to understand CLN3 disease etiology, pathology, and clinical progression, little is known about the impact of CLN3 disease on parents and caregivers. Here, we investigated CLN3 disease progression, clinical care, and family experiences using semi-structured interviews with 39 parents of individuals with CLN3 disease. Analysis included response categorization by independent observers and quantitative methods. RESULTS: Parents reported patterns of disease progression that aligned with previous reports. Insomnia and thought- and mood-related concerns were reported frequently. "Decline in visual acuity" was the first sign/symptom noticed by n = 28 parents (70%). A minority of parents reported "behavioral issues" (n = 5, 12.5%), "communication issues" (n = 3, 7.5%), "cognitive decline" (n = 1, 2.5%), or "seizures" (n = 1, 2.5%) as the first sign/symptom. The mean time from the first signs or symptoms to a diagnosis of CLN3 disease was 2.8 years (SD = 4.1). Misdiagnosis was common, being reported by n = 24 participants (55.8%). Diagnostic tests and treatments were closely aligned with observed symptoms. Desires for improved or stabilized vision (top therapeutic treatment concern for n = 14, 32.6%), cognition (n = 8, 18.6%), and mobility (n = 3, 7%) dominated parental concerns and wishes for therapeutic correction. Family impacts were common, with n = 34 (81%) of respondents reporting a financial impact on the family and n = 20 (46.5%) reporting marital strain related to the disease. CONCLUSIONS: Collectively, responses demonstrated clear patterns of disease progression, a strong desire for therapies to treat symptoms related to vision and cognition, and a powerful family impact driven by the unrelenting nature of disease progression.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Lipofuscinoses Ceroides Neuronais/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapêutico , Glicoproteínas de Membrana/genética , Pais , Progressão da Doença , Inquéritos e Questionários
12.
Science ; 383(6686): eadh4059, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422122

RESUMO

We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αß T cell counts at birth persisted over time, with normal memory αß and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αß T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αß T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αß T cells, autoimmune conditions were more frequent in these patients compared with the general population.


Assuntos
Autoimunidade , Linfócitos Intraepiteliais , Glicoproteínas de Membrana , Receptores de Antígenos de Linfócitos T alfa-beta , Humanos , Autoimunidade/genética , Diferenciação Celular , Homozigoto , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glicoproteínas de Membrana/genética , Mutação com Perda de Função , Contagem de Linfócitos , Alelos , Infecções/imunologia , Transtornos Linfoproliferativos/imunologia , Linhagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
13.
Medwave ; 24(1)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408113

RESUMO

Background: Two new SNPs have been recently associated to Alzheimer's disease in African American populations: FCGRIIB rs1050501 C/T, and PILRA rs1859788 A/G. The risk of Alzheimer's disease in FCGRIIB C and PILRA A allele carriers is three times higher than in non-carriers. However, the association between these and other single nucleotide polymorphisms (SNPs) has not been assessed. Methods: Linkage disequilibrium analysis, with r= 0.8 as a threshold value, was used to impute new candidate SNPs, on genomic data from both genes in 26 populations worldwide (n= 2504) from the 1000Genomes database. Results: Four SNPs (rs13376485, rs3767640, rs3767639 and rs3767641) were linked to rs1050501 and one (rs2405442) to rs1859788 in the whole sample. Conclusions: Five novel SNPs could be associated with Alzheimer's disease susceptibility and play a causal role, even if none of them are exon variants since their potential roles in the regulation of gene expression.


Antecedentes: Recientemente se han asociado dos nuevos polimorfismos de un solo nucleótido (SNP) a la enfermedad de Alzheimer en poblaciones afroamericanas: FCGRIIB rs1050501 C/T, y PILRA rs1859788 A/G. El riesgo de enfermedad de Alzheimer en los portadores de los alelos FCGRIIB C y PILRA A es tres veces mayor que en los no portadores. Sin embargo, no se ha evaluado la asociación entre estos y otros SNP. Métodos: Se utilizó el análisis de desequilibrio de ligamiento, con r2= 0,8 como valor umbral, para imputar nuevos SNPs candidatos, sobre datos genómicos de ambos genes en 26 poblaciones de todo el mundo (n= 2504) de la base de datos 1000Genomes. Resultados: Cuatro SNPs (rs13376485, rs3767640, rs3767639 y rs3767641) se vincularon al rs1050501 y uno (rs2405442) al rs1859788 en toda la muestra. Conclusiones: Cinco nuevos SNP podrían estar asociados con la susceptibilidad a la enfermedad de Alzheimer y desempeñar un papel causal, aunque ninguno de ellos sea una variante de exón, dado su papel potencial en la regulación de la expresión génica.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Predisposição Genética para Doença , Desequilíbrio de Ligação , Glicoproteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Receptores Imunológicos/genética
15.
World J Gastroenterol ; 30(4): 421-423, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38313233

RESUMO

According to the latest global cancer statistics, colorectal cancer (CRC) has emerged as the third most prevalent malignant tumor across the globe. In recent decades, the medical field has implemented several levels of CRC screening tests, encompassing fecal tests, endoscopic examinations, radiological examinations and blood tests. Previous studies have shown that leukocyte immunoglobulin-like receptor B2 (LILRB2) is involved in inhibiting immune cell function, immune evasion, and promoting tumor progression in acute myeloid leukemia and non-small cell lung cancer. However, its interaction with CRC has not been reported yet. Recently, a study published in the World Journal of Gastroenterology revealed that LILRB2 and its ligand, angiopoietin-like protein 2, are markedly overexpressed in CRC. This overexpression is closely linked to tumor progression and is indicative of a poor prognosis. The study highlights the potential of utilizing the concentration of LILRB2 in serum as a promising biomarker for tumors. However, there is still room for discussion regarding the data processing and analysis in this research.


Assuntos
Neoplasias Colorretais , Glicoproteínas de Membrana , Receptores Imunológicos , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Glicoproteínas de Membrana/genética , Transdução de Sinais , Biomarcadores Tumorais/metabolismo , Receptores Imunológicos/genética
16.
PeerJ ; 12: e16818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348100

RESUMO

Objective: Cerebral infarction is the main cause of death in patients with cerebrovascular diseases. Our research aimed to screen and validate pyroptosis-related genes in cerebral infarction for the targeted therapy of cerebral infarction. Methods and results: A total of 1,517 differentially expressed genes (DEGs) were obtained by DESeq2 software analysis. Gene set enrichment analysis results indicated that genes of middle cerebral artery occlusion (MCAO) mice aged 3 months and 18 months were enriched in pyroptosis, respectively. Differentially expressed pyroptosis-related genes (including Aim2, Casp8, Gsdmd, Naip2, Naip5, Naip6 and Trem2) were obtained through intersection of DEGs and genes from pyroptosis Gene Ontology Term (GO:0070269), and they were up-regulated in the brain tissues of MCAO mice in GSE137482. In addition, Casp8, Gsdmd, and Trem2 were verified to be significantly up-regulated in MCAO mice in GSE93376. The evaluation of neurologic function and triphenyltetrazolium chloride staining showed that the MCAO mouse models were successfully constructed. Meanwhile, the expressions of TNF-α, pyroptosis-related proteins, Casp8, Gsdmd and Trem2 in MCAO mice were significantly up-regulated. We selected Trem2 for subsequent functional analysis. OGD treatment of BV2 cell in vitro significantly upregulated the expressions of Trem2. Subsequent downregulation of Trem2 expression in OGD-BV2 cells further increased the level of pyroptosis. Therefore, Trem2 is a protective factor regulating pyroptosis, thus influencing the progression of cerebral infarction. Conclusions: Casp8, Gsdmd and Trem2 can regulate pyroptosis, thus affecting cerebral infarction.


Assuntos
Infarto da Artéria Cerebral Média , Piroptose , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/genética , Glicoproteínas de Membrana/genética , Proteína Inibidora de Apoptose Neuronal , Piroptose/fisiologia , Receptores Imunológicos
17.
Respir Res ; 25(1): 72, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317180

RESUMO

BACKGROUND: Pneumocystis pneumonia (PCP) is a life-threatening opportunistic fungal infection with a high mortality rate in immunocompromised patients, ranging from 20 to 80%. However, current understanding of the variation in host immune response against Pneumocystis across different timepoints is limited. METHODS: In this study, we conducted a time-resolved single-cell RNA sequencing analysis of CD45+ cells sorted from lung tissues of mice infected with Pneumocystis. The dynamically changes of the number, transcriptome and interaction of multiply immune cell subsets in the process of Pneumocystis pneumonia were identified according to bioinformatic analysis. Then, the accumulation of Trem2hi interstitial macrophages after Pneumocystis infection was verified by flow cytometry and immunofluorescence. We also investigate the role of Trem2 in resolving the Pneumocystis infection by depletion of Trem2 in mouse models. RESULTS: Our results characterized the CD45+ cell composition of lung in mice infected with Pneumocystis from 0 to 5 weeks, which revealed a dramatic reconstitution of myeloid compartments and an emergence of PCP-associated macrophage (PAM) following Pneumocystis infection. PAM was marked by the high expression of Trem2. We also predicted that PAMs were differentiated from Ly6C+ monocytes and interacted with effector CD4+ T cell subsets via multiple ligand and receptor pairs. Furthermore, we determine the surface markers of PAMs and validated the presence and expansion of Trem2hi interstitial macrophages in PCP by flow cytometry. PAMs secreted abundant pro-inflammation cytokines, including IL-6, TNF-α, GM-CSF, and IP-10. Moreover, PAMs inhibited the proliferation of T cells, and depletion of Trem2 in mouse lead to reduced fungal burden and decreased lung injury in PCP. CONCLUSION: Our study delineated the dynamic transcriptional changes in immune cells and suggests a role for PAMs in PCP, providing a framework for further investigation into PCP's cellular and molecular basis, which could provide a resource for further discovery of novel therapeutic targets.


Assuntos
Glicoproteínas de Membrana , Pneumonia por Pneumocystis , Receptores Imunológicos , Animais , Camundongos , Imunidade , Inflamação/metabolismo , Pulmão/microbiologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Pneumonia por Pneumocystis/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
18.
J Microbiol Biotechnol ; 34(2): 280-288, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38247210

RESUMO

The fusogenic membrane glycoprotein (FMG) derived from the human endogenous retrovirus-W (HERV-W) exhibits fusogenic properties, making it a promising candidate for cancer gene therapy. When cells are transfected with HERV-W FMG, they can fuse with neighboring cells expressing the receptor, resulting in the formation of syncytia. These syncytia eventually undergo cell death within a few days. In addition, it has been observed that an HERV-W env mutant, which is truncated after amino acid 483, displays increased fusogenicity compared to the wild-type HERV-W env. In this study, we observed syncytium formation upon transfection of HeLa and TE671 human cancer cells with plasmids containing the HERV-W 483 gene. To explore the potential of a semi-replication-competent retroviral (s-RCR) vector encoding HERV-W 483 for FMG-mediated cancer gene therapy, we developed two replication-defective retroviral vectors: a gag-pol vector encoding HERV-W 483 (MoMLV-HERV-W 483) and an env vector encoding VSV-G (pCLXSN-VSV-G-EGFP). When MoMLV-HERV-W 483 and pCLXSN-VSV-G-EGFP were co-transfected into HEK293T cells to produce the s-RCR vector, gradual syncytium formation was observed. However, the titers of the s-RCR virus remained consistently low. To enhance gene transfer efficiency, we constructed an RCR vector encoding HERV-W 483 (MoMLV-10A1-HERV-W 483), which demonstrated replication ability in HEK293T cells. Infection of A549 and HT1080 human cancer cell lines with this RCR vector induced syncytium formation and subsequent cell death. Consequently, both the s-RCR vector and RCR encoding HERV-W 483 hold promise as valuable tools for cancer gene therapy.


Assuntos
Retrovirus Endógenos , Neoplasias , Humanos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Proteínas do Envelope Viral/genética , Células HEK293 , Vetores Genéticos/genética , Neoplasias/genética , Neoplasias/terapia , Glicoproteínas de Membrana/genética , Genes Neoplásicos
19.
Aging (Albany NY) ; 16(2): 1555-1580, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38240717

RESUMO

Genome-wide association studies (GWAS) have identified multiple risk variants for Parkinson's disease (PD). Nevertheless, how the risk variants confer the risk of PD remains largely unknown. We conducted a proteome-wide association study (PWAS) and summary-data-based mendelian randomization (SMR) analysis by integrating PD GWAS with proteome and protein quantitative trait loci (pQTL) data from human brain, plasma and CSF. We also performed a large transcriptome-wide association study (TWAS) and Fine-mapping of causal gene sets (FOCUS), leveraging joint-tissue imputation (JTI) prediction models of 22 tissues to identify and prioritize putatively causal genes. We further conducted PWAS, SMR, TWAS, and FOCUS using a multi-trait analysis of GWAS (MTAG) to identify additional PD risk genes to boost statistical power. In this large-scale study, we identified 16 genes whose genetically regulated protein abundance levels were associated with Parkinson's disease risk. We undertook a large-scale analysis of PD and correlated traits, through TWAS and FOCUS studies, and discovered 26 casual genes related to PD that had not been reported in previous TWAS. 5 genes (CD38, GPNMB, RAB29, TMEM175, TTC19) showed significant associations with PD at both the proteome-wide and transcriptome-wide levels. Our study provides new insights into the etiology and underlying genetic architecture of PD.


Assuntos
Doença de Parkinson , Transcriptoma , Humanos , Estudo de Associação Genômica Ampla , Proteoma/genética , Predisposição Genética para Doença , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Glicoproteínas de Membrana/genética
20.
BMC Cancer ; 24(1): 89, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229014

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS: We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS: EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION: EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Glioma/patologia , Transição Epitelial-Mesenquimal/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...